
big limitation
of almost all
computers is

that they are passive:
They only do what we
tell them to do. But what
if they could actually
learn from our actions?
What if they could take
the drudgery out of lo-
cating files? More of us could use computers if only
our computers were smarter.
	

 Scott McGregor, general manager of Atherton
Technology's Ahead Division, thinks smarter comput-
ers are the next step beyond the ease of use we get
from graphical user interfaces, or GUIs
	

 In his article, "Prescient Agents: A Radar
O'Reilley for your Desktop," (The X Resource, Fall
1991; O'Reilly ad Assoc.) McGregor draws the anal-
ogy between the Radar O'Reilley character on the tele-
vision series M*A*S*H--who was always able to an-
ticipate the colonel's needs for files and information--
and computers that can actively give us information
with minimal effort on our part.
	

 Many people are just beginning to understand
how GUIs make computers easier to use by making
them easier to command. But prescient user interfaces,
or PUIs, promise to teach our computers to learn from
what we have done and serve as an active helper.
While McGregor doesn't expect commercial products
for two or three years, he is convinced of their useful-
ness to attract new computer users.
	

 Here's an example of how a PUI would help
me work. I manage my DOS files using Microsoft
Window's File Manager. Each time I use File Manager
I must tell it how I want the files arranged and what I
want to know about each one. These are options that I
can select, but I must select them each time I use File
Manager. If File Manager were smarter, it could antici-
pate my needs based on my habits of using it.
	

 Of course, the best way to handle my files
would be to have my computer handle them for me--by
understanding how I work, what I need when I work
on certain jobs, and so on. In this way, my computer

acts like an assistant that hands me the right plans,
tools and materials as I need them.
	

 PUIs could also help us work smarter in group
situations. As I'm writing this, I 'm also handling off
part of a project to another person who would be more
productive if she could work at my desk--complete
with all my tools, notes, files, and lists of contacts. In a
PUI world where all these objects are linked, she
would be able to recreate my desk as her own.
	

 McGregor goes into far more detail about
how prescient user interfaces and session managers
work than I can fathom. For me, more interesting than
how they work is how the thinking of programmers is
changing in response to the needs of non-programmers
and the new technology of object methods.
	

 It's critical that both my computing environ-
ment and my applications be configurable in ways that
make them easier for me to use. But I don't want to
become a programmer to get this benefit. This leaves
me with two options: hire a programmer to help me run
my life, or buy software that understands what I want
and anticipates my needs.
	

 We all want computers to make us more pro-
ductive. But before that can happen, there is much to
be done to make computers easier to use and less prob-
lematic. If programmers are beginning to recognize the
needs of naive users, we are likely to see improve-
ments in how computer work for all of us.

UnixWorld May 1992! Editor's Thoughts

Prescient Agents: A Radar O’Rei"ey for your Desktop! 1

Smarter
Programming
Brings Smarter
Computers

A

PRESCIENT AGENTS:
A RADAR O’REILLEY FOR YOUR DESKTOP
HOW APPLICATIONS CAN SUPPORT AND ANTICIPATE USER

NEEDS BY MONITORING USER ACTIONS

Scott L. McGregor

"Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0,
October 1991, pages 95-111 (X Window System Series), edited by Adrian Nye, ISBN 978-0-

937175-79-8

ABSTRACT
Past systems have been largely passive, acted upon by the user. But new systems are becoming
more participative. Instead of mere slaves that do only precisely what they are told, we are enter-
ing an era in which systems will participate more like clerks or secretaries in a "team of two"
with the user. This leads us toward interfaces that monitor actions and anticipate needs, auto-
matically reconfiguring themselves to facilitate future actions. Prescient agents, as they are
termed in this document, can improve the productivity of both individuals and groups. They rep-
resent the confluence of many research areas such as Ul design, agents, database technology and
Computer Supported Co-operative Work (CSCW) into the applications of tomorrow.

Scott L. McGregor has been managing software development for more than 20 years, including ten years at
Hewlett-Packard, where, as manager of an R&D team managing software development of commercial CASE
systems, McGregor developed the initial concept proposal and prototypes for Prescient Agents described here.

McGregor is now founder of Ce" Pay Me, where he continues his interest and work in Prescient Agents.
McGregor welcomes contact from interested readers. He can be contacted at Swift Design Group, 412 Kings
Court, Campbell, CA 95008 or by electronic mail at mcgregor@swiftdesigngroup.com.

Reprinted "Prescient Agents, A Radar O'Reilley for your Desktop" in The X Resource: Issue 0, October 1991,
pages 95-111 (X Window System Series), edited by Adrian Nye, ISBN 978-0-937175-79-8

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 2

mailto:mcgregor@swiftdesigngroupcom?subject=
mailto:mcgregor@swiftdesigngroupcom?subject=

PRESCIENT AGENTS:
A RADAR O’REILLEY FOR YOUR DESKTOP
HOW APPLICATIONS CAN SUPPORT AND ANTICIPATE USER

NEEDS BY MONITORING USER ACTIONS

Scott L. McGregor

WHAT ARE PRESCIENT AGENTS?
Most computer systems today begin execution at the same state each time. When you start up a
PC or Unix box, you typically begin with a directory prompt for your home directory. It doesn't
matter if the last time you were using the system you were working in a different directory. A few
systems, such as the Apple Macintosh Finder, remember the state from the last time you used the
system. This saves you the effort of having to navigate to re-establish your previous working
context. Only a few systems, such as the MIT Media Lab's NewsPeek system, actually learn
about your preferences from many previous usage sessions. Prescient computing systems derive
from this last approach.

Prescient computing systems are systems that learn about your work patterns by monitoring your
use of the system. They simplify future work by creating and managing agents or other forms of
accelerators that simplify recognition of and access to multiple work contexts. We call these sys-
tems prescient because they appear to users to have anticipated the need to change work focus by
the way they simplify those changes. While this is possible due to the heavy habitual nature of
much human work, we observed that it still could be pleasantly surprising to users. The systems
only provide accelerators for probable work focus changes, based upon past usage patterns.

Heightening this feeling of prescience is that these agents are not merely personal but also ac-
tively support work groups of collaborators. Part of the surprise aspect comes from the fact that
the system agents can not only learn your work artifacts, contexts and habits, but that the system
agents can not only learn your work artifacts, contexts and habits, but also that the system agents
can not only learn your work artifacts, contexts and habits, but also those of your collaborators.
The system simplifies access to contexts and artifacts (created by collaborators) that are germane
to current work, including those previously unknown to you.

Current systems are often confusing for users because they require the user to remember and
specify details that are peripheral to their tasks. My project team at Hewlett-Packard and 1 have
collected a large sample of Unix shell history files and found that 25-66% of each users' com-
mands are just to navigate around and search for related artifacts in the file system. (See Figure
1). A primary cause of this problem is that most of today's computer systems do not manage the
context in which you are working. This forces you to remember how the file system instantiates

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 3

your work contexts, (for example, by local naming conventions). You must then continually
manage any translations or navigation implied by this mapping. These overhead tasks compete
for short-term memory with your goal directed work. As the number of things to be remembered
increases, cognitive performance suffers, leading to increased errors, and decreased task per-
formance and productivity. We believe this was particularly true for the task areas such as we
were studying (software development) that are characterized by an extremely high number of
artifacts to be managed.

THEORY OF PRESCIENCE
Having recognized some cognitive aspects of current systems that were not well matched to the
user's capabilities and tasks, my team and 1 sought to develop a model for how computer sys-
tems might further simplify personal work and collaboration with work partners. We found that
having a model of how a human agent accomplishes such work was helpful for discussing how
our computer agents could facilitate such work as well. One example of the type of agent we en-
visioned was that of an administrative assistant, and in particular we use as such an example the
character of Radar O'Reilley, the company clerk in the movie and TV show M*A*S*H.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 4

RADAR O’REILLEY - A HUMAN PRESCIENT AGENT
Radar O'Reilley is an example of how changes to the user interface can support management of
complexity and interaction with others. We frequently saw Radar O'Reilley standing outside the
door to his colonel's office with a handful of file folders. His colonel would open the door only to
be startled by Radar there ready with a handful of files. The colonel would barely get out one or
two words out when Radar was already handing him the one file he needed and offering other
files he might also want to consult. Other times we'd see Radar finding out what was going on
elsewhere in Korea by talking on the phone with Sparky, the local radio telephone operator. Later
we might see Radar telling everyone to get ready for incoming wounded just before anyone else
detected the sounds of approaching helicopters. In one episode, Max Klinger replaced Radar.
Max was rarely able to find requested files and often suggested that officers rummage through
the file room themselves. This is how most interfaces are today.

Now, let us look at a theory for how computer agents can simplify users' work, and how com-
puter agents can offer some of the behavior of a Radar O'Reilley.

Imagine you are Radar's Colonel, Radar augments your memory by remembering where all the
files are kept and having them ready when you need them. You don't need to remember their
name or storage location.

Radar improves your communication through his keeping in touch with Sparky and the other
clerks around Korea. He can find out things that will help you, which others forgot to mention.
He also knows about other people who have interests that intersect with yours and others in the
unit, he thus can help with bartering and other forms of exchange of value that begin with com-
munication.

Lastly, he can enhance your reasoning by allowing you to stay focused on the task, while he
manages the communications and data storage details. He can help you anticipate outside
changes (such as incoming wounded) which will alter your current work tasks, so you are always
ready to proceed to the next task.

It is important to notice that Radar gains this knowledge of what information you will need next,
just by watching you at work. Radar has realized that when you are working on something you
also are likely to need related files. He is able to learn to anticipate what flies relate to your cur-
rent work based on what flies you used together before. He uses that information to "pre- fetch"
the handful of files. Then a one or two word cue is sufficient for him to choose just one from the
handful. Radar also can anticipate what work will require interaction with others by noting where
it came from, who it might be shared with, etc. But he does this unobtrusively without having to
ask constantly or having to be told. How different from most computer systems today!

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 5

AN EXAMPLE OF PRESCIENT AGENTS IN X
In this section, let us take a look at the conceptual features of a Prescient system, along with the
features of a prototype system in X, MindShare, created by David Williams, Mike Monegan, and
myself at Hewlett-Packard in 1989. The original impetus for the work was to try to find alterna-
tive ways of enhancing the usability of computers for developing commercial software. We
quickly observed that many problems that distracted software developers were common to many
computer users. This led to a study of computer usage patterns and error patterns. Out of this
study came our plan to address these problems through the creation of a prescient computing sys-
tem. We began with a scenario, "A Scenario for Future Software Development", which 1 deliv-
ered at the 1989 GroupWare Workshop at Xerox PARC as part of the World Computer Congress.
We also built a prototype of MindShare, to test the initial theory of prescience.

The major conceptual features of our system are:

• The enhanced window manager system menu,

• The links’ pop-up menu,

• The ad hoc link creation mode,

• The link attributes’ dialog box, and

• The WebLenses (linkage viewers), including

• The neighbors’ menu list,

• The ToDo list manager and

• The node and arc representation.

Our major goal was to augment the normal window management with a form of prescience that
understood that various windows were related to each other, allowing them to form work con-
texts that can be saved, restored, searched and retrieved. Other systems use the notion of "rooms"
to show contexts. Some limited abilities to restore context states across reboots are possible for
some of these systems. A fundamental difference between a "rooms" system and MindShare was
that in a rooms system it is up to you to decide consciously how to organize your work contexts.
In MindShare, work contexts are derived observationally form everyday usage with no other user
action required. Users could al specifically show associative relationships between windows (and
by implication their underlying files) manually.

HABITS AND PRESCIENT AGENTS
Jef Raskin, a designer of the Macintosh User Interface, has pointed out the critical importance of
habits to understanding successful user interfaces. Our experiences bear out his views. Wherever
people can leverage old habits they learn quickly. Where they can quickly develop

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 6

new habits (similar things done similarly, different things done differently) task performance is
improved. Where user interfaces frustrate habits (dangerously different things done similarly) we
find errors increase and performance decreases as the user has to think about what an input might
do. E.g. if Ctrl-P always means "print" you might type it automatically when you wanted a file
printed. But if it sometimes means "purge" (non-undoable delete) selected object" your habit
would be frustrated because you couldn’t afford to learn this as an automatic motion.

While many anticipatory systems have been good about habit formation, a few have not. This
leads to the wide spread fear that anticipatory systems will in fact confuse the user because the
state of the system is not predetermined. We have found it is not the predetermination of the sys-
tems that is important to usability, but instead their predictability and their ability to form useful
habits. Predictability and predetermination turn out not to be the same. Take for instance a menu
of links. If the menu is ordered in terms of most recently used items, then which item will be at
the top is not pre-determined, yet habits can be easily formed—particularly to retrieve the last
used item. If the cognitive cost of being wrong in your selection is low, this habit can be formed
quickly and become an automated part of working despite its non-determinism. In our system we
took great care to use prescience only for non-destructive activities such as pre- fetching infor-
mation or ordering menus.

GOALS FOR THE MINDSHARE PRESCIENT AGENTS
How could a standard X environment be modified to be more prescient? Imagine you could work
on a task without ever having to remember the names of the files you are working on, nor where
they are stored. Imagine you could find out about all the related files to what you are working on,
even those created or modified by others. Imagine you could instantly return to the set of win-
dows you had up two months ago, or even to the set of windows that a former colleague was
working on last year. Imagine a Radar O'Reilley for your desktop that kept your files ready for
you-not interrupting you, but not making you wait while files were being sought.

GRAPHICAL USER INTERFACE FEATURES
We designed our system to require as little additional learning from experienced computer users
as possible. Our target environment was for users of the Motif window manager (mwm). The
Motif window manager normally provides a "system" pull down menu associated with each
window on the desktop. From this menu you can normally access abilities to resize, move,
iconify, and otherwise manipulate the current window.

LINKS
We added a new capability as an additional menu item, which allows you to traverse or create
new links from the object underlying this window, to other objects. When you select the link
menu item, an additional window is displayed that lists a menu of neighbor objects that are

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 7

linked associatively to the currently selected window. Clicking on an existing item causes the
related object to be "re-animated" (program restarted on related data) using the proper edit or
display method for data of this type. (See Figure 2).

Traversing Links

Associative Links between objects can be used to easily re-animate a related artifact, causing it to be re-
displayed for viewing or editing. The user doesn't need to remember a filename or directory path, nor the
name of the proper program to use for redisplay or editing because the link object already remembers
this. Thus, the user simply picks the related item and it re-appears. Complexity is reduced because the list
of links is much smaller than the items that would appear in an object browser that does not distinguish
among artifacts.

FIGURE 2: TRAVERSING LINKS

NEW LINKS
The menu also contains a button that will allow you to create a new link. New links can be cre-
ated in two ways. If the destination of the link is an object with a currently visible window, then
the user can merely mouse over to the other window (the sprite changes to a cross-hair image)
and then click. The system will automatically compute the underlying object and other attributes
of the link according to a set of user definable rules. It is also possible to fill in a dialog box and
specify a link to an object not currently visible. (See Figure 3).

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 8

Creating Links

Users can create ad hoc links by simply requesting link service from the system menu
and then pointing at another visible artifact and clicking again. A non-blocking dialog box
appears with information about the link that can be edited by the user. Defaults are de-
rived using rule-based heuristics. Link creation must be fast and simple if people are to
create many ad hoc links. The solution here seems to work well if the server is respon-
sive. In addition to ad hoc links, other links can be generated automatically by agents
triggered according to additional heuristics. One important agent is the context agent
that derives implied links from spatial and temporal co-location. Thus the user can get
the benefits of a wealth of artifacts very inexpensively.

FIGURE 3: CREATING LINKS

When the user creates a new link, MindShare displays a dialog box allowing the user to specify
labels and attributes of the link. It creates defaults for each frame automatically according to user
specified rule sets, and it is common to dismiss the box immediately by confirming the pre-filled
values. But, the dialog box is non-blocking and can be left around to be manually modified at
any other time, so that labeling can be deferred. This is important because usually you create
links as a by-product of work in progress. Having to interrupt this goal directed work to specify
attributes at creation time can be distracting from the main task. Keeping the creation of links
"cheap" in terms of cognitive load on you is important. If creation of links is too cumbersome,

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 9

you will rarely or never bother to use them. Since their value is related to their frequency of use,
this is an important usability design goal.

WEBLENSES
The advantage of the neighbor's list is its compactness. When the pull down is not selected, it
does not take up any screen real estate. When pulled down, it shows only the related links for the
currently selected window. Mostly, that is all you want-you are working on one thing, and you
want to now switch to a particular other thing. You want that selection list to be minimal and
easy to manage. Occasionally there are other tasks that you want to do where this type of re-
trieval is not best. So it is useful to create other display forms and filters. We called these We-
bLenses.

One WebLens, the Graph WebLens, allows the entire transitive web of associations to be dis-
played as an active node and arc diagram. We display objects as node "buttons" and links as arcs,
in a widget we called XmGraph, developed by another member of our team, Luis Miguel. You
can re-animate objects by clicking on the nodes, inspect link attributes by clicking on arcs, and
create and destroy links by editing the network representation.

For most work the Graph WebLens is overkill. Rich association webs grow quickly and soon the
webs are too complex to manage. Mostly, the neighbors' menus provide much less complex
views that are far more useful. Sometimes (such as when determining the full impact of a 2-line
change to one program) there is no substitute for the richer view. It is precisely the magnitude of
the complexity of the situation you want to determine in such cases. Still, it is usually helpful to
reduce complexity where possible by hiding or filtering out nodes and links that are not of inter-
est. WebLens filters allow characteristics of links and nodes to be specified for inclusion or ex-
clusion from the current graph.

TO DO LIST AND AGENDA LIST
Another very important set of WebLenses is the ToDo list and Agenda list WebLenses. These are
simple menu lists, but instead of attaching to a particular window, they belong to the overall con-
text (root window). Selecting one item on the list does not merely re-animate one object; it re-
animates all the objects in that context. This is equivalent to re-establishing yourself in a new
room. This is useful if you want to be able to return to the same screen set up you had two
months ago when you were working on a different project (a typical ToDo list use). (See Figure
4).

In meetings, this can be useful for managing switching between multiple presentations (a typical
Agenda list use). (See Figure 5).

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 10

FIGURE 4: ToDo LISTS

AUTO-ENCAPSULATION
Prescient agents can be created to be evolutionary by providing an encapsulation feature. This
can be done by creating and associating a new object with existing executable flies (which act as
methods) and data files on which they act (private data stores). (See Figure 6). In some environ-
ments this would require a one-time manual change for each new artifact to be created. By using
a session manager (see below), we can monitor your existing commands to the base operating
system and automatically register them as you use them. We call this auto-encapsulation and it
allows the system to learn the objects that you use without you having to instruct it. This is
analogous to other learn-by-doing systems and to the way Radar learned about his commander.
Radar O'Reilley learned to recognize contexts as his commander did work; his commander did
not define and explicitly manipulate these contexts by name beforehand.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 11

FIGURE 5: AGENDA LISTS

RULE BASED AGENTS AND PRESCIENT AGENTS
Invisible agents also can create links automatically in the background as you work. User- config-
ured rule sets control and trigger agents. In the software development domain, we had an agent
that could be run every time a user edited a source file. The agent would scan for "include" refer-
ences in the source and automatically create links to the referenced include files. Once it creates
the links, it is trivial for you to bring up windows for each include file when debugging.

The most important of the invisible rule-based agents are the prescient agents that build links ac-
cording to rules concerning the spatial and temporal collocation of windows on the screen. These
can be used to automatically intuit the need for a link between a source file and the associated
design diagram whenever both appear on the screen simultaneously. The use of co-locality and
co-temporality to deduce associative work relationships is very important to giving the illusion
of prescience and the Radar O'Reilley effect. Much more on this topic could be said than can be
covered here.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 12

FIGURE 6: AUTO ENCAPSULATION

SELF AWARENESS, SHARED CONTEXTS AND PRE-
FETCHING EXPECTED INFORMATION
One of the novel aspects of prescient agents is that they appear to be self-aware. When a user's
action changes the state of the system, the system not only performs the user's request, but the
prescient session manager notes the action and the corresponding changes. This allows the sys-
tem to notice changes to the current context by noting additional new windows added to the cur-
rent display (spatial and temporal co-location). These could introduce a new artifact into the con-
text, or could indicate a switch to a new context. The session manager can then use this informa-
tion to pre-fetch other related artifacts or to pre-fetch a new context. The prescient session man-
ager also notices if any of the artifacts are shared with other collaborators. It can then determine
if there are any shared contexts with that collaborator that should be pre-fetched (see Figure 7).
By pre-fetching information, instead of waiting for a specific response, you avoid the usual waits
for data-retrieval that are common with systems today.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 13

FIGURE 7: SHARED CONTEXTS

MULTIMEDIA
A system for managing artifacts becomes more valuable as it manages more artifacts. We felt it
important to support not just text, but computer generated and scanned in graphics, animations,
digital voice, and video. It must be easy to capture such non-textual information or people won't
bother. People will often do a voice annotation of some text or animation that they won't take the
time to write about. Or they will scribble a note on a piece of paper but not re-type it. These are
still valuable artifacts, so it is desirable to bring them into the system for the historical and com-
munication record. Thus a nearby scanner or microphone can lead to easy capture of more valu-
able artifacts. (See Figure 8). Some of the searching capabilities must be changed when dealing
with non-textual artifact: you can't do string searches. But, you still have the associative link
paths. Additional searching capabilities such as fast forwarding or indexing on voice and video
segments could add more value. People may be moderately deterred from accessing such media,
but this is okay. A natural equilibrium will form naturally between the difficulty in locating a par-
ticular piece of information and its value to the current task.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 14

FIGURE 8: MULTIMEDIA

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 15

FIGURE 9: ARCHITECTURE

ARCHITECTURE OF MINDSHARE, OUR EXAMPLE SYSTEM
Specific implementation details about our system are too lengthy to include in this article, but I
have included an implementation overview diagram for reference, (see Figure 9). Major compo-
nents include the following:

• The X session manager watches for window events that signify a new active object. Informa-
tion sufficient to identify the object is in window system tables. The object is then looked up in
the link database. If found, information concerning its neighbor links is pre- fetched. If it is not
found, then we automatically create a new object entry using auto- encapsulation.

• The Softbench Broadcast Message Server (really a subscription message redistribution server)
communicates among interested agents.

• The link server interfaces with an object-oriented database repository that contains information
about the links and objects. Typically this is on a remote database server and in communicated
over a LAN from the session server that runs on a bit-mapped workstation.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 16

Some special agents and maintenance tools can access and manipulate the OODB directly using
an object oriented SQL extension. Other agents can post access requests and link- creation re-
quests via the standard protocols supported by the broadcast message server.

Note that in this example system, the objects consist of methods and data stored in the file sys-
tem, accessible to standard Unix utilities. When following a link from one artifact to another, the
best you can do is link to file level objects. We call this large granularity. By creating objects that
are smaller, such as paragraphs in an article or statements in source code, it is possible to make
even more useful links between artifacts because the links can be localized. At its extreme, this
small granularity becomes a full hypertext system. We can protect these objects from unpredict-
able changes made directly to the underlying file systems, but they lose the capability of being
acted upon by existing file-based tools.

RELATED WORK
The ideas for prescient agents did not arise in a vacuum. We acknowledge a variety of sources
that lead to the work described here.

D O M E S T I C A T I N G T H E C O M P U T E R
In order to analyze our metaphor for prescient support, we adopted a model from Joel Birnbaum,
VP of R&D at Hewlett-Packard, in which he gives three capabilities that computers must give to
humans for computers to become "domesticated":

• Augment Human Memory.

• Improve Human Communication.

• Enhance Human Reasoning Ability.

As we have seen, prescient agents focus on the first two areas, and through them contributes to
the third.

There are two additional human capabilities to be concerned with, human perception and human
motor actions, notably the subject of Donald Norman's "Psychology of Everyday Things." In our
model, a computer monitor displays the system state. A mouse and keyboard allow you to physi-
cally manipulate the system. Our goals were to use these interfaces to create prescient agents that
could support the user's cognitive needs of memory, communication, and reasoning.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 17

FIGURE 10: DOMESTICATING THE COMPUTER

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 18

MEDIA LAB & DOMESTICATING THE COMPUTER
PRESCIENCE: A CONCORDANCE
While Birnbaum's model describes a worthy goal, it does not suggest how this might be accom-
plished. It is illustrative to combine Birnbaum's model with other models of how those capabili-
ties might be delivered.

In 1978, Nicholas Negreponte, director of the MIT Media Lab, created a figure that illustrated his
prediction that Broadcast/Telecommunications, Publishing and Computer industries would be-
come a single combined industry by 2000.

In Figure 10, I have also mapped Joel Birnbaum's capabilities on the same kind of diagram. It is
easy to see the parallels between the two models when you recognize that published documents
are a major way of augmenting human memory. The Telecommunication and Broadcasting in-
dustries have been our primary means for improving human communication. Computers, through
programs as diverse as linear programs and VLSI simulators, have been automating tasks and
enhancing our reasoning.

It is also illustrative to map these two disciplines within the computer industry. Here we see
that databases provide a place to store information akin to publishing, while networking
software supports communications. User Agents provide technology to enhance reasoning.
This provides guidance on what technologies to use in building prescient agents.

CONCLUSION
The principles of prescient agents are not new cognitive principles but instead the basic princi-
ples we have long known, now applied in a different way. Most of the activity at the computer
keyboard can tell you a lot about the primary work tasks, but our passive systems have done their
work without examining or recording this information. Prescient agents allow a new form of
support of the windowed user interface user, not merely a passive slave interface, but active,
helpful agent-based task support. As such, they represent a logical next step for today's desktops,
rooms, and browsers, implementable with today's X technologies.

Readers may wonder how they can get a Radar O'Reilley for their computer, and why one is not
standard with their window manager today. It is not the technology that is missing: the building
blocks such as versioned file systems, hypermedia systems, object oriented databases, rule- based
systems and windowed user interfaces already exist. They can be combined into the sort of sys-
tem outlined here, just as we did with our prototype. We are starting to see components of this
technology leaking out from various companies today. Considerable work in user interfaces and
CSCW has been published lately. But sociological understanding is lagging technology some-
what. There are also the normal marketing, positioning and pricing issues for each vendor to
work out.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 19

A major problem that has made availability of this technology difficult has been the lack of spe-
cific customer demand for it. Users don't know how to ask for it, nor who to ask. Developing a
common vocabulary and sample prototypes systems that users can point to should help.

If you want a Radar O'Reilley for your window manager or software application, you will have
to express your needs for such systems to the software vendors. And vendors need to understand
your needs in terms of their strengths and weaknesses to begin envisioning new opportunities for
such systems. Awareness of prescient agent technology may come slowly, but will provide sub-
stantial value when it arrives on your X desktop.

Reprinted from Prescient Agents, A Radar O'Rei"ey for your Desktop" in The X Resource: Issue 0, October 1991, pages 95-111

Prescient Agents: A Radar O’Rei"ey for Your Desktop! 20

